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Background/Need

• In comparison to ceramic materials, high-temperature metal alloys would:
• Reduce stack costs (cheaper materials, formability)
• Enhance mechanical integrity/fracture toughness of stack

• Ferritic stainless steels (~ 20% Cr) represent a class of metal alloys that form 
conductive oxide scales with thermal expansion characteristics that are well 
matched to their ceramic counterparts

Issues
Traditional ferritic stainless steels (i.e., 430, E-brite) form chromium oxide scales that:

1. Continue to grow at high temperatures       spallation, and
2. Do not prevent interdiffusion of cations (i.e., Cr out and Co in)

• As the trend in planar SOFC development is 
driven to lower temperatures (i.e., <800o C), 
oxidation resistance metal alloys become 
feasible as candidate interconnect materials

Ultimately leading to degraded fuel cell performance
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Technical Issues Addressed



R&D Objectives/Challenges

• Engineer surface oxide scale on a ferritic stainless steel that is:
– Stable (i.e., mechanically and chemically) at 800o C in oxidizing/reducing 

environments, and 
– Electrically conductive (minimize stack IR losses)

• Develop/implement processes that are inherently scaleable for 
manufacturing

• Demonstrate stability/electrical conductivity of interconnect for 
extended time (> 1000 hours) at 800o C in contact with cathode 
materials ((La0.8Sr0.2)FeO3 and (La0.6Sr0.4)(Fe0.8Co0.2)O3)



Technical Approach

Formation of Stable Oxide
• Basis: Additions of Al and Y in a FeCrAlY alloy have been shown to stabilize  

oxide (Nuclear Industry (UK) and bond coat for TBC in turbine blades)
– 4-5% aluminum; formation of stable scale, 
– ~1% yttrium improves resistance to spallation; 

(promotes thinner oxide, reduces cation diffusion along g.b.)

• Approach: Development of stable thermal oxide (> 850o C) on FeCrAlY alloy

• Issue: Poor electrical conductivity

Implantation of electronic carriers
• Basis*: Lead implanted polycrystalline alumina, niobium implanted α-alumina, 

and iron implanted MgO crystals have all shown to increase electrical conductivities 
(*See for example: Romana et al, “Phase Formation Study in α-Al2O3 Implanted with Niobium Ions”, 
Nuc. Instr. & Meth. In Phys. Res., B46 (1990), p. 94)

• Approach: Implant ions (i.e., Nb, Ti, and Y) at dosages of a few a/o at a depth 
of 100 – 150 nm to increase electrical conductivity

• Issue: Matching penetration depth (concentration) to formation of stable oxide



Experimental Approach
• Ion Implantation depth, d, is held constant while varying the 

thickness of the thermally grown oxide (>850o C)
Oxide Thickness

Ion Type 0 d* 2d* 4d*

Nb+ x x x x
Ti+ x x x x
Y+ x x x x

• Area Specific Resistance (ASR) Measurement as f(temperature)
– DC Measurements

Cured Pt Paste Mechanical Contact

– AC Impedance Measurements 
(equivalent circuit)
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Experimental Approach
• Interdiffusion Couple Experiment 

– Thick, monolithic interconnect/electrode materials under load
– Pre-load compensated at temperature with thermal expansion 

differences
– Sample size:  ~1 cm x 1cm

• Verify stability of electrode/interconnect interface at temperature



Results to Date
• Thermal Oxide Kinetics (Parabolic Growth, T= kp (t)1/2, as f(temperature))
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Results to Date
• Thermal Oxide Kinetics (Parabolic growth @900o C, as f(alloy type))
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Results to Date
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• X-ray Diffraction (Structure)
– Formation of mixed oxides, (Cr,Fe)2O3 and Al2O3

– Increase of Al2O3 at higher temperatures 

X (Cr,Fe)2O3
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Results to Date
• AES Surface Analysis (900 oC in dry air,  2 hr.)

– Mixed oxide with alumina segregated to surface
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Results to Date
• ASR Measurements (in progress)

– Verification of Ohms Law
– Verification of contacting method

• Fabrication of cathode Material (UTA )
– La0.8Sr0.2FeO3  and LSC (in progress) pellete supplied by W.J. 

Wan, J.B. Goodenough, Materials Science and Engineering, UTA

• Ion Implantation (in progress)

Ion
Nb Ti Y

Dose,     Ions/cm2              1E16    1E16  1E16
Nominal Depth, µm      0.12      0.12    0.12
Energy,  KeV 280       150     270
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Results to Date
• Preliminary ASR of FeCrAlY thermal oxide (950o C) with Pt paste
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Results to Date

Real Impedance (Ohm)
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             Inititial     Final    
Rdc :      7.77 Ω    8.10 Ω
Rp :       38.3 Ω     34.0 Ω
CPE:     153 nF   145 nF
β:              0.852    0.868 

• Preliminary AC Impedance Measurements (un-doped thermal oxide)



Applicability to SOFC Commercialization

• As part of the cost share commitment, SwRI is developing a scaleable 
implantation process in-line with other large-scale vacuum processing

Metal Ion Source (Ar+Cr plasma) Large-scale PIII Chamber

• Based on success of Phase I, SwRI would team with commercial 
partner to develop large-scale implantation capability and demonstrate 
applicability of process to SOFC stacks



Activities for Next 3-6 months
• Complete Ion Implantation/ Validate concentration/depth

• ASR measurements as a f(temperature) for thermally grown/ion 
implanted oxides

• Long term, 1,000 hour, testing in simulated fuel cell environment

• Conduct interdiffusion couple experiments with  xxx cathode materials
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